Tag
#buffer_overflow
A logic flaw in our location bar implementation could have allowed a local attacker to spoof the current location by selecting a different origin and removing focus from the input element. This vulnerability affects Firefox < 76.
An exploitable vulnerability exists in the configuration-loading functionality of the jw.util package before 2.3 for Python. When loading a configuration with FromString or FromStream with YAML, one can execute arbitrary Python code, resulting in OS command execution, because safe_load is not used.
There is a buffer overwrite vulnerability in the Quram qmg library of Samsung's Android OS versions O(8.x), P(9.0) and Q(10.0). An unauthenticated, unauthorized attacker sending a specially crafted MMS to a vulnerable phone can trigger a heap-based buffer overflow in the Quram image codec leading to an arbitrary remote code execution (RCE) without any user interaction. The Samsung ID is SVE-2020-16747.
GraphicsMagick through 1.3.35 has a heap-based buffer overflow in ReadMNGImage in coders/png.c.
An issue was found in Linux kernel before 5.5.4. The mwifiex_cmd_append_vsie_tlv() function in drivers/net/wireless/marvell/mwifiex/scan.c allows local users to gain privileges or cause a denial of service because of an incorrect memcpy and buffer overflow, aka CID-b70261a288ea.
ABB MicroSCADA Pro SYS600 version 9.3 suffers from an instance of CWE-306: Missing Authentication for Critical Function.
An array overflow was discovered in mt76_add_fragment in drivers/net/wireless/mediatek/mt76/dma.c in the Linux kernel before 5.5.10, aka CID-b102f0c522cf. An oversized packet with too many rx fragments can corrupt memory of adjacent pages.
cbs_jpeg_split_fragment in libavcodec/cbs_jpeg.c in FFmpeg 4.1 and 4.2.2 has a heap-based buffer overflow during JPEG_MARKER_SOS handling because of a missing length check.
Heap buffer overflow in media in Google Chrome prior to 80.0.3987.162 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
An exploitable signed comparison vulnerability exists in the ARMv7 memcpy() implementation of GNU glibc 2.30.9000. Calling memcpy() (on ARMv7 targets that utilize the GNU glibc implementation) with a negative value for the 'num' parameter results in a signed comparison vulnerability. If an attacker underflows the 'num' parameter to memcpy(), this vulnerability could lead to undefined behavior such as writing to out-of-bounds memory and potentially remote code execution. Furthermore, this memcpy() implementation allows for program execution to continue in scenarios where a segmentation fault or crash should have occurred. The dangers occur in that subsequent execution and iterations of this code will be executed with this corrupted data.