Tag
#c++
A use-after-free flaw was found in the Linux kernel’s Atheros wireless adapter driver in the way a user forces the ath9k_htc_wait_for_target function to fail with some input messages. This flaw allows a local user to crash or potentially escalate their privileges on the system.
ACCEL-PPP 1.12.0 has an out-of-bounds read in post_msg when processing a call_clear_request.
Conti ransomware looks for and executes DLLs in its current directory. Therefore, we can potentially hijack a DLL to execute our own code and control and terminate the malware pre-encryption. The exploit dll will check if the current directory is "C:\Windows\System32" and if not we grab our process ID and terminate. We do not need to rely on hash signatures or third-party products as the malware's own flaw will do the work for us. Endpoint protection systems and or antivirus can potentially be killed prior to executing malware, but this method cannot as there's nothing to kill the DLL that just lives on disk waiting. From a defensive perspective you can add the DLLs to a specific network share containing important data as a layered approach. All basic tests were conducted successfully in a virtual machine environment.
Conti ransomware looks for and executes DLLs in its current directory. Therefore, we can potentially hijack a DLL to execute our own code and control and terminate the malware pre-encryption. The exploit dll will check if the current directory is "C:\Windows\System32" and if not we grab our process ID and terminate. We do not need to rely on hash signatures or third-party products as the malware's own flaw will do the work for us. Endpoint protection systems and or antivirus can potentially be killed prior to executing malware, but this method cannot as there's nothing to kill the DLL that just lives on disk waiting. From a defensive perspective you can add the DLLs to a specific network share containing important data as a layered approach. All basic tests were conducted successfully in a virtual machine environment.
Conti ransomware looks for and executes DLLs in its current directory. Therefore, we can potentially hijack a DLL to execute our own code and control and terminate the malware pre-encryption. The exploit dll will check if the current directory is "C:\Windows\System32" and if not we grab our process ID and terminate. We do not need to rely on hash signatures or third-party products as the malware's own flaw will do the work for us. Endpoint protection systems and or antivirus can potentially be killed prior to executing malware, but this method cannot as there's nothing to kill the DLL that just lives on disk waiting. From a defensive perspective you can add the DLLs to a specific network share containing important data as a layered approach. All basic tests were conducted successfully in a virtual machine environment.
Conti ransomware looks for and executes DLLs in its current directory. Therefore, we can potentially hijack a DLL to execute our own code and control and terminate the malware pre-encryption. The exploit dll will check if the current directory is "C:\Windows\System32" and if not we grab our process ID and terminate. We do not need to rely on hash signatures or third-party products as the malware's own flaw will do the work for us. Endpoint protection systems and or antivirus can potentially be killed prior to executing malware, but this method cannot as there's nothing to kill the DLL that just lives on disk waiting. From a defensive perspective you can add the DLLs to a specific network share containing important data as a layered approach. All basic tests were conducted successfully in a virtual machine environment.
Conti ransomware looks for and executes DLLs in its current directory. Therefore, we can potentially hijack a DLL to execute our own code and control and terminate the malware pre-encryption. The exploit dll will check if the current directory is "C:\Windows\System32" and if not we grab our process ID and terminate. We do not need to rely on hash signatures or third-party products as the malware's own flaw will do the work for us. Endpoint protection systems and or antivirus can potentially be killed prior to executing malware, but this method cannot as there's nothing to kill the DLL that just lives on disk waiting. From a defensive perspective you can add the DLLs to a specific network share containing important data as a layered approach. All basic tests were conducted successfully in a virtual machine environment.
Conti ransomware looks for and executes DLLs in its current directory. Therefore, we can potentially hijack a DLL to execute our own code and control and terminate the malware pre-encryption. The exploit dll will check if the current directory is "C:\Windows\System32" and if not we grab our process ID and terminate. We do not need to rely on hash signatures or third-party products as the malware's own flaw will do the work for us. Endpoint protection systems and or antivirus can potentially be killed prior to executing malware, but this method cannot as there's nothing to kill the DLL that just lives on disk waiting. From a defensive perspective you can add the DLLs to a specific network share containing important data as a layered approach. All basic tests were conducted successfully in a virtual machine environment.
xpdf 4.04 allocates excessive memory when presented with crafted input. This can be triggered by (for example) sending a crafted PDF document to the pdftoppm binary. It is most easily reproduced with the DCMAKE_CXX_COMPILER=afl-clang-fast++ option.
Scripting languages like JavaScript are being integrated into commercial software to support easy file modification. For example, Adobe Acrobat accepts JavaScript to dynamically manipulate PDF files. To bridge the gap between the high-level scripts and the low-level languages (like C/C++) used to implement the software, a binding layer is necessary to transfer data and transform representations. However, due to the complexity of two sides, the binding code is prone to inconsistent semantics and security holes, which lead to severe vulnerabilities. Existing efforts for testing binding code merely focus on the script side, and thus miss bugs that require special program native inputs. In this paper, the researchers propose cooperative mutation, which modifies both the script code and the program native input to trigger bugs in binding code.